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Measuring the DC conductivity of warm dense matter (WDM) is of general interest as it will inform models of
a variety of astrophysical and planetary phenomena, including the production of the currents at the Earth’s
core responsible for Earth’s magnetic field. Low frequency conductivity measurements can be performed via
terahertz spectroscopy, in which a terahertz laser pulse is transmitted through WDM. The transmitted pulse
can be used to determine the complex conductivity of the WDM as a function of frequency. However, given
that WDM states are unstable and evolve in their phase space on timescales shorter than that of the terahertz
pulse, it is important to investigate the affect that this evolution has on the transmitted pulse. Recursive
convolution finite difference time domain (RC-FDTD) simulations can be used to investigate this affect in
conventional materials, with the hope that any insights will generalize to WDM experiments. Preliminary

results of this simulation technique are explored.

I. INTRODUCTION

When solid matter is heated into a plasma on a short
timescale the heated matter briefly passes through a state
of matter known as warm dense matter (WDM). As the
matter is heated on such a short timescale the heating
occurs isochorically, meaning that the matter, despite
having the temperature of a typical plasma, is confined
within the volume of its solid phase state. Without the
enormous pressures required to contain the WDM within
its original volume, the WDM state is rendered unstable
and quickly expands, exiting the WDM phase and enter-
ing a plasma phase. Recently it has become possible to
investigate such WDM states in the laboratory.

Stable WDM states exist in systems under extreme
pressure, such as planetary cores, white dwarfs, and
brown dwarfs. WDM at the Earth’s core is responsi-
ble producing Earth’s magnetic field. Characterizing the
DC electrical conductivity (referred to hereafter as con-
ductivity) of WDM states is of interest because, amongst
other reasons, it could lead to a deeper understanding of
how Earth’s magnetic fields are generated.

The low frequency behavior of conductivity in WDM
states can be examined through terahertz spectroscopy.
In these experiments a terahertz pulse is transmitted
through a sample. The pulse amplitude can be sampled
in time, yielding a time profile of the transmitted pulse.
This transmission can, in the thin sample limit9, yield
a measurement of the complex conductivity of the sam-
ple. As terahertz pulses are composed of low frequencies
(rather than in infrared frequencies or higher) near DC
conductivity can be determined via this method.

Terahertz pulses last for timescales of around 500fs.
Due to the unstable nature of laboratory induced WDM
states, it cannot be assumed that WDM conductivity is
constant over a 500fs timescale. Therefore it is of interest
to determine how matter changing on the timescale of
a terahertz pulse affects the conductivity measurement
extracted from that pulse. Due to the difficulty of ac-
curately modeling WDM, we have chosen to investigate
this same problem in conventional materials. The re-
mainder of this paper describes a simulation method and

how that simulation method can determine how chang-
ing material conductivity effects a terahertz conductivity
measurement of that material.

II. RC-FDTD

Recursive convolution finite difference time domain
(RC-FDTD) simulations have long been used to numer-
ically solve Maxwell’s equations. This simulation tech-
nique discretizes the time domain and evolves the electric
and magnetic fields in time using a set of update equa-
tions. Within the simulation, space is discretized into
intervals of length Az and time into intervals of length
At. A specific point in time and space is accessed via
z = 1Az and t = nAt. The simulation relies on a num-
ber of assumptions:

e All materials are linear dielectrics such that
P(z,w) = eoxE(z,w).

e The electric and magnetic fields are plane waves
propagating along spatial coordinate z.

e Materials are uniform along spatial coordinates x
and y.

e The electric and magnetic fields are zero for all time
prior to the start of the simulation (E(z,t) = 0 for
all ¢ < 0).

e The electric field F(z,t) is approximately constant
over all time intervals of duration At.

e The magnetization of all materials is zero (]\7[ = 6)

These assumptions allow the derivation of the discretized
displacement field D*™

n—1
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This result is derived in appendix [A] and is crucial for
the subsequent derivation of the electric and magnetic
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field update equations™ derived in appendixand given
below
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The accuracy of the derivative approximation inherent
to these update equations relies on choosing some Az
and At small enough such that the electric and mag-
netic fields are approximately linear over spatial intervals
Az and time intervals At. If this condition is not met
then the accuracy of the derivative approximation breaks
down. The update equations derived here are significant
as they reveal that any linear dielectric can be accurately
simulated via the RC-FDTD method as long as the elec-
tric susceptibility of the material x(t) is well defined. We
turn our attention to modeling the electric susceptibility
of materials in section [TIl

III. MODELING ELECTRIC
SUSCEPTIBILITY

We implement a model for the electric susceptibility of
a material that considers the classical interaction between
an electron and an atomic nucleus of the same charge!*?.
The net force on the electron can be described as follows

mei(t) = qE(t) — 2meyi(t) — mewdz(t)  (5)
—— —— —_——— ——
F=ma driving force  damping force restoring force

where ~ is the damping constant, wq is the natural fre-
quency of the oscillator, and E(t) is the electric field
along the displacement axis. The general solution of this
differential equation is well known

z(t)y=e " [A’leﬁt + A’Qe_ﬂt]

where 8 = /72 — w?. In order to model the electric sus-
ceptibility resulting from an arbitrary periodic driving
electric field we allow a linear combination of solutions
x;(t) indexed by j. This allows the modeling of any ar-
bitrary periodic driving electric field.

€0 [Goo + XO] Az

[Hi+1/2,n+1/2 B Hi71/2,n+1/2}

The time displacement of a single oscillating electron
is used to determine the electric susceptibility x(t) of a
simulated material. Consider the dipole moment pro-
duced by the electron-atomic nucleus charge pair p(t) =
gex(t). Letting N such electron-atomic nucleus oscilla-
tors exist per unit volume of the material, it is found
that the polarization per unit volume of the material is
P(t) = Np(t) = Nq.a(t). Since x(w) E(w) = P(w), P(t),
x(t), and E(t) are related via the convolution

/ X(T)E(t — 7)d7 = P(t) = Nga(t)

— 00

Thus in the presence of a dirac delta function electric
field the electric susceptibility of the material ist

X(t) =Y e [Aj €%t 4 Aj e (6)
J

where Ng. is absorbed into A’ ; and A’ , to get A; 1 and
Ajo. This result can be combined with Eq. to yield
a computationally efficient update equation for Eq.,
discussed in Beard et al.. Via a Fourier transform of
Eq.(5) and noting that y(w)E(w) = P(w) = Ng.z(w)
we find the electric susceptibility of the material in the
frequency domain to be

X(w) = _, Nag/me
wd — w? 4 2iyw

(7)

IV. STATIC AND DYNAMIC MATERIALS

Often materials investigated via a spectroscopic mea-
surement are in thermodynamic equilibrium. We will call
these materials static materials as they are static within
their respective phase spaces®. In order to demonstrate
the ability of the model derived in section [[II] to describe
a static material we show how this general model can be
reduced to the Drude model. For a lossy material where
e =1




Drude metals have no restoring force, meaning wy = 0.
Using Eq.(7) as a definition for x(w)

U(w):i%
2y 1—%

Let 7 = % and o9 = Ng>7/m.
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o(w) (®)

which is known to be the conductivity of a Drude metal®.
Thus by selecting Ay = —As and 8 = ~ for all j, Eq.@
reduces from our general electric susceptibility to the
electric susceptibility of a Drude metal. A simulation
of a Drude metal is performed in section [V] and serves
as a test of the simulation’s accuracy.

Discussion so far has been limited to the case of static
materials. If a material is not in thermodynamic equi-
librium the definition for electric susceptibility given in
Eq.@ becomes insufficient as the parameters A4; 1, A; o,
74, and B; acquire some time dependence. We denote
such materials dynamic materials. The question now be-
comes how does one accurately model the electric sus-
ceptibility of a dynamic material within the framework
of an RC-FDTD simulation.

One method of simulating dynamic materials is to de-
fine two electric susceptibility models in a single material:
the excited state electric susceptibility and the ground
state electric susceptibility. Both susceptibilities result
from populations of excited and ground state electron-
atomic nucleus oscillators discussed in section [[IIl By
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varying these populations in time the material becomes
dynamicdl. This evolving electric susceptibility is given
by

X(t) = feXe(t) + (1 - fe)Xg(t)

where f, is the fraction of oscillators in the excited state
at any point in time. In order to model f, one is required
to consider the mechanism through which oscillators are
excited.

Typically some material will be excited by a visual
pulse which has a gaussian profile in time with FWHM
of I'. The number of oscillators excited from their ground
state at any given instant in time due to the visual pulse
is proportional to the amplitude of the visual pulse at
that time. Thus the fraction of oscillators moved from
their ground state to their excited state at some point in
time is given by the error function scaled to range [0, 1].

The population of excited oscillators will experience an
exponential decay in time with associated time constant
79. If I' < 719 the exponential decay begins at approxi-
mately the same time for each oscillator population ex-
cited by the visible pulse. If this assumption cannot be
made then care must be taken to ensure that each ex-
cited oscillator starts to decay at the time it is initially
excited.

The spatial extent of the material is a relevant consid-
eration when formulating f.. The visual pulse arrives at
different points in the material at different times, mean-
ing that the visual pulse amplitude is determined by both
its space and time coordinates. Thus f. is defined as

fe(z,t, At) :% (erft {

(t —to) — (2 — 20)/v — At

SIS

X exp {—

where 6(§) is the Heaviside step function, tg is the time
at which the visible pulse enters the material, zy is the
starting location of the material, v is the speed of the
visual pulse in the material, At is the time delay between
the visual and terahertz pulse (At < 0 corresponds to a
visual pulse that occurs before the terahertz pulse), and
the error function is determined by integrating a gaussian
with respect to time. The Heaviside step functions ensure
that f.(z,t) is zero for times where the the visual pulse
is not yet inside the material and for locations outside of
the material®.

It is relevant to note that this definition of f.(z,t, At)
has two important properties

til{noof(z,t, At)=0 tlggo f(z,t,At) =0

70

Joe ~ oz = 20

(

These two properties are necessary as at times far from
the presence of the visual pulse the fraction of excited
oscillators should go to zero.

V. SIMULATIONS

In order to determine if the simulation could produce
accurate results the Drude metal described in section [V]
was placed into the simulation and its conductivity was
probed. Specific values of the constants present in Eq.@
used in the simulation can be found in table [l The an-
alytic form for the conductivity of a Drude metal given
in Eq. is fit to the simulated conductivity by allowing
oo to vary. The simulated sample is 50nm thick, much
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FIG. 1. The simulated and analytic conductivities of a Drude
metal. o1 corresponds to the real part of some complex con-
ductivity o while o2 corresponds to the imaginary part. One
might note that that the simulated and analytic results start
to diverge around 12.5THz. This is a result of the terahertz
pulse having approximately zero amplitude in frequency space
beyond 12.5THz.

TABLE I. Drude metal simulation parameters.

€oo 1.000
Ay, — A 1.000 x 10*¢
T 500.0fs

v 1.000THz

shorter than the wavelengths composing the terahertz
pulse. In this limit the conductivity is given by

= a7 )

where Z; is the impedance of free space, d is the width
of the sample, and ¢(w) is the ratio of the transmitted
terahertz pulse to the reference terahertz pulse. The the
simulated and analytic forms of conductivity are nearly
identical, as seen in Fig. ().

A simulation using the dynamic material model de-
scribed in section [[V] was performed, again on a material
50nm thick. The dynamic material in question is a Drude
metal in both its ground and excited states. However, the
scattering time 7 of the ground and excited state differs.

TABLE II. Short visual pulse method simulation parameters

€oo 1.000

Ac, —Ae,2 1.000 x 10'°
Ag1,—Ag2 1.000 x 10¢
Ye 10.00GHz
Yg 1.000THz

r 100.0fs

) 1.000ps

Te 50.00ps

Tg 500.0fs

The parameters used in the simulation can be found in
table [T} The simulation is still in its early stages, and as
such was not fit to any experimental results. The trans-
mitted electric field E;(t) in time can be found versus the
the time delay between the visual and terahertz pulse At
in Fig.. The lineout plot at the bottom of Fig. re-
veals that E(t) is transformed by the visual pulse in a
different manner depending on the value of At. Further
analysis will reveal if this transformation is negligible, or
if it significantly effects the measured conductivity of the
dynamic material.

VI. CONCLUSION

We have implemented an RC-FDTD simulation and
shown its ability to replicate the behavior of traditional
materials, such as the Drude metal. A model for the
behavior of a dynamic material has been proposed and a
preliminary simulation has been performed.

There are a number of clear future directions to take
this simulation method. Future simulations might use
the dynamic material model proposed in section [[V] but
simulate a material that undergoes a more drastic tran-
sition, from an insulator to a Drude metal, for exam-
ple. Such simulations could reveal behavior very different
from that of the dynamic simulation performed in section
[V] It is also of interest to propose another model for the
fraction of excited oscillators f.. Such a model might take
the fact that oscillators are excited at different times and
therefore have a different decay associated with them into
account. Or it might account for the fact that excited os-
cillators emit photons through spontaneous emission that
might result in the excitation of other oscillators. It is
also relevant to consider the interaction between the vi-
sual pulse and the electric susceptibility at the frequency
of the visual pulse, which might add a x(¢)yisual to the
definition of x (#}*. It is also of interest to perform further
analysis on dynamic material simulations that will reveal
how conductivity measurements are effected by evolving
material properties.
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FIG. 2. The electric field transmitted through a dynamic material. The heatmap displays the amplitude of the transmitted
electric field F¢(t) in time and as a function of the delay At between the visual and terahertz pulses. The lineout plot displays
the amplitude of the electric field F;(t) at specific times as a function of At.
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Appendix A: Deriving and discretizing the time
domain displacement field

Recall the displacement field D(7,w) from Eq.(4.21) in
Griffiths. With the requirement that simulated materials
are linear dielectrics such that P(z,w) = g x(z,w)E(z,w)
and the requirement that the field varies over only the
spatial coordinate z we find that D(z,w) is

D(z,w) =€ [1 + x(z,w)] E(z,w)

The displacement field D(z,w) can be transformed to the
time domain via

D(z,t) =F ' {D(z,w)}
=F e [1 4 x(w)] E(z,w)}
=F {eoF {1+ x(t)} F{E(2,t)}}

where F {a(t)} and F~!{a(v)} to denote Fourier and
inverse Fourier transforms. Thus via the convolution



theorem™

D(z,t) = F {eoF {1+ x()} F{E(2,1)}}
= €0 [+ x(1)] * [E(2,1)]

= ¢ {eooE(z, t) + /0 t X(T)E(z,t — 7)dr

where * denotes a convolution. It is assumed that
E(z,t) =0 for all t < 0. We discretize this result by re-
placing the z and ¢ coordinates via z = iAz and t = nAt
where 7,n € R, yielding

D(iAz,nAt) =epexc E(iAz, nAt)

nAt
+ eo/ X(T)E(iAz,nA — 7)dr
0

Assuming that E(iAz,nA — 7) is constant over all time
intervals of duration At the integral is replaced with a

J

E(z+ Az, t) — E(z,1)

Alirgo Az
 lim H(z+ Az, t) — H(z,t)
Az—0 Az

From here the discretization process is simple. We simply
remove each limit from the equations, define an appro-
priate value of Az and At, and replace the fields with
their discretized forms.

Ei+1,n _ Ei,n Hi,n+1 _ Hi,n
=— B1
Ax Ho At (B1)

Hi+1,n, _ H’LTI Di,n+1 _ D’LTI
0, bt B

If Az and At aren’t small enough such that the deriva-
J

sum
n—1
D™ = eges EP™ + € Z Ein—mym (A1)
m=0
where

(m+1)At
e [
mAt

It is not assumed x(¢) is constant over any time inter-
val. This result is consistent with the result derived in
Luebbers et al. and Beard et al..

Appendix B: Discretizing Maxwell’s Equations

With the requirement that M = 0 and the requirement,
that the electric and magnetic fields are uniform in spa-
tial coordinates x and y, Faraday’s law of induction and
Ampere’s law with Maxwell’s addition reduce to

oF _ _ oH  _oH . 9D
02 Mo 02 T o

where I; is along 2. Noting the definition of a derivative®
we find

H(z,t+ At) — H(z,t)

—Ho Aliglo At
D(z,t + At) — D(z,t)
Iy + AI}EIE}O At

tive is accurate then the RC-FDTD simulation will break
down.

We solve Eq.(B1) for H*"*! finding the following up-
date equation

Hi,n—l—l _ Hi,n _ i% [Ei-‘rl,n _ Ei,n]

In order to solve Eq.(B2) we use the result of Eq.(Al)
to determine D*"*1 — D%" in terms of E*T%" and E*"

n—1

n
D'L,n+1 _ Dun — EoeooEz,nJrl + €o E Ei,n+17mxm _ EOGOQELn — ¢ E Ez,nmem

m=0

= €0€oo [Ei,nJrl _ Ez,n} + €0 Z Ei,n+1—mxm .

m=0

n n—1

Z Ei,nfmxm

m=0 m=0



Noting that

ZEszrlmm ZEznmm

ZEzn m m*Eln+1XO+ZE7’n+1 m m

m=1
n—1

n—1

_ Ei,n+1X0 + Z Ei,n+17(m+1)xm+1 o Z Ei,nfmxm
m=0 m=0
n—1

_ Ei,n+1X0 + Z Ei,nfm [Xerl _ Xm}

m=0

and letting we find

AXm — Xm _ Xerl

_ nz Ez}nfmAXm

Di,n+1 _ Di,n = €0 [Ei,n-i-l _ Ez,n} [Ez ,n+1 0 ,(/)n]

=€ [eoo + XO} Bt epen BV — eqyh™
[
Substituting this result into Eq.(B2) and solving for E»+1 we find
J
Ei,n+1 _ €0 Eim 1 wn At‘[f
7€oo+X €00 + X0 [600+X]
1 At ,
o [HH—I \n Hz,n]
e +X°] A2

We then implement the Yee cell in the simulation by
offsetting the electric and magnetic field cells by half a
spatial and temporal increment!, producing the update
equations Eq. and Eq. in section [[I} The derivation
performed here was checked against Luebbers et al. and
Beard et al. and is consistent with those two results.
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